Recap data wrangling

Some worked examples and exercises

Applied Data Science using R, Session 12

Prof. Dr. Claudius Gräbner-Radkowitsch Europa-University Flensburg, Department of Pluralist Economics www.claudius-graebner.com | @ClaudiusGraebner | claudius@claudius-graebner.com

A worked example

Vantage point

A tibble: 8 \times 7

cou	ntry	Variable	`2008`	`2009`	`2010`	`2011`	`2012`
<ch< td=""><td>r></td><td><chr></chr></td><td><db1></db1></td><td><dbl></dbl></td><td><db1></db1></td><td><dbl></dbl></td><td><db1></db1></td></ch<>	r>	<chr></chr>	<db1></db1>	<dbl></dbl>	<db1></db1>	<dbl></dbl>	<db1></db1>
$1 {\rm Ger}$	many	HealthSpending	10.3	11.2	11.1	10.8	10.9
2 Ger	many	EducationSpending	4.44	4.91	4.94	4.82	4.96
3 Ita	ly	HealthSpending	8.53	8.95	8.92	8.77	8.78
4 Ita	ly	EducationSpending	4.39	4.52	4.33	4.12	4.06
5 Net	herlands	HealthSpending	9.28	9.99	10.2	10.2	10.5
6 Net	herlands	EducationSpending	5.03	5.43	5.49	5.46	5.41
7 Spa	in	HealthSpending	8.38	9.11	9.12	9.17	9.16
8 Spa	in	EducationSpending	4.53	4.91	4.86	4.90	4.47

Intermediate step

# A tibble	: 40 × 4			
country	Variable	year	Value	
<chr></chr>	<chr></chr>	<chr></chr>	<db1></db1>	
1 Germany	HealthSpending	2008	10.3	
2 Germany	HealthSpending	2009	11.2	
3 Germany	HealthSpending	2010	11.1	
4 Germany	HealthSpending	2011	10.8	
5 Germany	HealthSpending	2012	10.9	
6 Germany	EducationSpending	2008	4.44	
7 Germany	EducationSpending	2009	4.91	
8 Germany	EducationSpending	2010	4.94	
9 Germany	EducationSpending	2011	4.82	
10 Germany	EducationSpending	2012	4.96	
# with 3	0 more rows			
# i Use `p	rint(n =) to s	see moi	re rows	

Goal: tidy data

A tibble: 20×4

		lla al thû û an di wa	E du e et é en Crean dé rais
country	year		EducationSpending
<chr></chr>	<chr></chr>	<db1></db1>	<db1></db1>
1 Germany	2008	10.3	4.44
2 Germany	2009	11.2	4.91
3 Germany	2010	11.1	4.94
4 Germany	2011	10.8	4.82
5 Germany	2012	10.9	4.96
6 Italy	2008	8.53	4.39
7 Italy	2009	8.95	4.52
8 Italy	2010	8.92	4.33
9 Italy	2011	8.77	4.12
10 Italy	2012	8.78	4.06
11 Netherlands	2008	9.28	5.03
12 Netherlands	2009	9.99	5.43
13 Netherlands	2010	10.2	5.49
14 Netherlands	2011	10.2	5.46
15 Netherlands	2012	10.5	5.41
16 Spain	2008	8.38	4.53
17 Spain	2009	9.11	4.91
18 Spain	2010	9.12	4.86
19 Spain	2011	9.17	4.90
20 Spain	2012	9.16	4.47

A worked example # A tibble: 20 × 4 country year HealthSpending EducationSpending <db1> $\langle dh \rangle$ <chr> <chr> 1 Germany 2008 10.3 4.44 # A tibble: 40×4 2 Germany 2009 11.2 4.91 country Variable vear Value 2010 11.1 4.94 3 Germany <chr> <dbl> <chr> <chr> # A tibble: 8×7 4 Germany 2011 10.8 4.82 1 Germany HealthSpending 2008 10.3 5 Germany 2012 10.9 4.96 country Variable 2008` 2009 2010 `2011` 2012 6 Italy 2008 8.53 4.39 2 Germany HealthSpending 2009 11.2 <db1> <chr> <chr> <db1> <db1> <db1> <db1> 7 Italy 2009 8.95 4.52 3 Germany HealthSpending 2010 11.1 1 Germany HealthSpending 10.3 11.2 11.1 10.8 10.9 8 Italy 2010 8.92 4.33 4 Germany HealthSpending 2011 10.8 4.94 4.82 4.96 2 Germany EducationSpending 4.44 4.91 9 Italy 2011 8.77 4.12 5 Germany HealthSpending 2012 10.9 8.78 3 Italy HealthSpending 8.53 8.95 8.92 8.77 10 Italy 2012 8.78 4.06 6 Germany EducationSpending 2008 4.44 4 Italy EducationSpending 4.39 4.52 4.33 4.12 4.06 11 Netherlands 2008 9.28 5.03 5 Netherlands HealthSpending 9.28 9.99 10.2 10.2 10.5 7 Germany EducationSpending 2009 4.91 12 Netherlands 2009 9.99 5.43 6 Netherlands EducationSpending 13 Netherlands 2010 10.2 5.49 5.03 5.43 5.49 5.46 5.41 8 Germany EducationSpending 2010 4.94 14 Netherlands 2011 10.2 5.46 7 Spain HealthSpending 8.38 9.11 9.12 9.17 9.16 9 Germany EducationSpending 2011 4.82 15 Netherlands 2012 10.5 5.41 8 Spain EducationSpending 4.53 4.91 4.86 4.90 4.47 10 Germany EducationSpending 2012 4.96 16 Spain 2008 8.38 4.53 # ... with 30 more rows 17 Spain 2009 9.11 4.91 # i Use `print(n = ...)` to see more rows 18 Spain 2010 9.12 4.86 19 Spain 2011 9.17 4.90 20 Spain 2012 9.16 4.47 intermediate_step <- vantage_point %>% pivot_longer(final_result <- intermediate_step %>% cols = -c("country", "Variable"), pivot_wider($names_to = "year"$ names_from = "Variable". values_to = "Value") values_from = "Value") final_result <- vantage_point %>% pivot_longer(cols = -c("country", "Variable"), names_to = "year", values_to = "Value") %>% pivot_wider(names_from = "Variable", values_from = "Value")

Take-Aways: the general wrangling workflow

- 1. After reading in the raw data print it using head()
- 2. Then write down how the desired version of the data set looks like
- 3. Think step-by-step how you can reach the final version
 - Either backwards from the goal, or forwards from the start
- 4. After thinking about the steps, write down the functions you need
- 5. Start coding

Your turn

- Get together in groups of two
- Each of you works on the following task, after 5 minutes you explain to each other what you did, how you did it, and why you did it
 - Important: before start coding, explicate your final goal and make yourself a plan of how to proceed!

Download the data set from ex1.csv, import it and make it tidy!

A more complex worked example

Vantage point

A tibble: 8×7

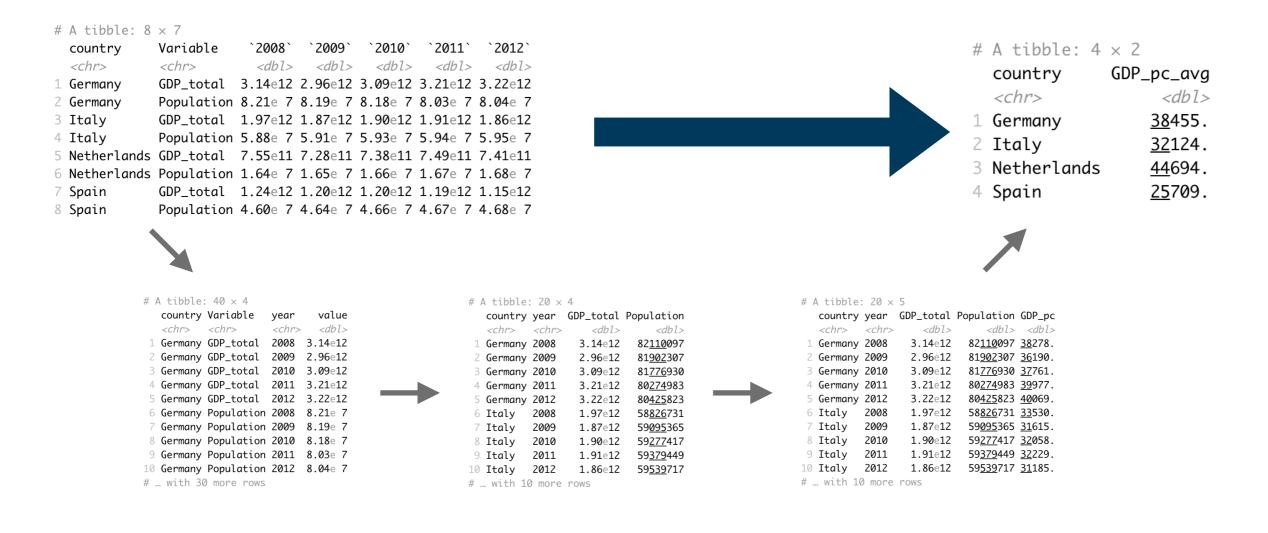
	country	Variable	`2008`	`2009`	`2010`	`2011`	`2012`
	<chr></chr>	<chr></chr>	<db1></db1>	<db1></db1>	<dbl></dbl>	<db1></db1>	<db1></db1>
1	Germany	GDP_total	3.14e12	2.96e12	3.09e12	3.21e12	3.22e12
2	Germany	Population	8.21e 7	$8.19\text{e}\ 7$	8.18e 7	8.03e 7	8.04e 7
3	Italy	GDP_total	1.97e12	1.87e12	1.90e12	1.91e12	1.86e12
4	Italy	Population	5.88e 7	5.91e 7	5.93e 7	5.94e 7	5.95e 7
5	Netherlands	GDP_total	7.55e11	7.28e11	7.38e11	7.49e11	7.41e11
6	Netherlands	Population	1.64e 7	1.65e 7	1.66e 7	1.67e 7	1.68e 7
7	Spain	GDP_total	1.24e12	1.20e12	1.20e12	1.19e12	1.15e12
8	Spain	Population	4.60e 7	4.64e 7	4.66e 7	4.67e 7	4.68e 7

A tibble: 40×4

# /	A tibble:	: 40 × 4			# /	A tibble	: 20 ×	4		#
	country	Variable	year	value		country	year	GDP_total	Population	
	<chr></chr>	<chr></chr>	<chr></chr>	<db1></db1>		<chr></chr>	<chr></chr>	<db1></db1>	<db1></db1>	
1	Germany	GDP_total	2008	3.14 e12	1	Germany	2008	3.14e12	82 <u>110</u> 097	1
2	Germany	GDP_total	2009	2.96e12	2	Germany	2009	2.96e12	81 <u>902</u> 307	2
3	Germany	GDP_total	2010	3.09e12	3	Germany	2010	3.09e12	81 <u>776</u> 930	3
4	Germany	GDP_total	2011	3.21e12	4	Germany	2011	3.21e12	80 <u>274</u> 983	4
5	Germany	GDP_total	2012	3.22e12	5	Germany	2012	3.22e12	80 <u>425</u> 823	-
6	Germany	Population	2008	8.21e 7	6	Italy	2008	1.97e12	58 <u>826</u> 731	6
7	Germany	Population	2009	8.19e 7	7	Italy	2009	1.87e12	59 <u>095</u> 365	7
8	Germany	Population	2010	8.18e 7	8	Italy	2010	1.90e12	59 <u>277</u> 417	8
9	Germany	Population	2011	8.03e 7	9	Italy	2011	1.91e12	59 <u>379</u> 449	ç
	2	Population			10	Italy	2012	1.86e12	59 <u>539</u> 717	10
	2	more rows			# .	with 10	0 more	rows		#

Goal: Average GDP per capita

#	A tibble: 4	× 2
	country	GDP_pc_a∨g
	<chr></chr>	<db1></db1>
1	Germany	<u>38</u> 455.
2	Italy	<u>32</u> 124.
3	Netherlands	<u>44</u> 694.
4	Spain	<u>25</u> 709.


A tibble: 20×5

	country	year	GDP_total	Population	GDP_pc
	<chr></chr>	<chr></chr>	<db1></db1>	<dbl></dbl>	<db1></db1>
1	Germany	2008	3.14e12	82 <u>110</u> 097	<u>38</u> 278.
2	Germany	2009	2.96e12	81 <u>902</u> 307	<u>36</u> 190.
3	Germany	2010	3.09e12	81 <u>776</u> 930	<u>37</u> 761.
4	Germany	2011	3.21e12	80 <u>274</u> 983	<u>39</u> 977.
5	Germany	2012	3.22e12	80 <u>425</u> 823	<u>40</u> 069.
6	Italy	2008	1.97e12	58 <u>826</u> 731	<u>33</u> 530.
7	Italy	2009	1.87e12	59 <u>095</u> 365	<u>31</u> 615.
8	Italy	2010	1.90e12	59 <u>277</u> 417	<u>32</u> 058.
9	Italy	2011	1.91e12	59 <u>379</u> 449	<u>32</u> 229.
10	Italy	2012	1.86e12	59 <u>539</u> 717	<u>31</u> 185.
¥ .	. with 10	0 more	rows		

Your turn

- Get together in groups of two and download the data set ex2.csv
- Implement the pathway of transformations just discussed:

Final task

• Consider the data set ex3.csv:

A tibble: 13×7

		-							
	country	income		`2012`	`2011`	`2010`	`2009`	`2008`	
	<chr></chr>	<chr></chr>		<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<dbl></dbl>	
1	Chile	High income		4.51	4.44	4.09	3.88	4.07	
2	China	Upper middle	income	7.05	6.90	6.34	5.80	5.44	
3	Germany	High income		9.45	9.30	9.45	8.97	9.62	
4	India	Lower middle	income	1.51	1.41	1.34	1.29	1.19	
5	Italy	High income		6.33	6.68	6.84	6.72	7.56	
6	Namibia	Upper middle	income	1.61	1.54	1.48	1.45	1.44	
7	Netherlands	High income		9.40	9.51	10.3	9.71	10.0	
8	Nicaragua	Lower middle	income	0.784	0.808	0.774	0.764	0.794	
9	Peru	Upper middle	income	1.63	1.65	1.55	1.43	1.34	
10	Saudi Arabia	High income		16.9	16.4	16.3	15.3	15.1	
11	South Africa	Upper middle	income	8.08	7.87	8.30	8.01	8.57	
12	Spain	High income		5.76	5.87	5.87	6.20	7.06	
13	United States	High income		15.8	16.6	17.4	16.8	18.3	

- Compute the deviation from the mean CO2 emissions for each country in each year, then compute the average deviation per income group!
- Finally, take this result and average the deviations per group over time!

