Multiple linear regression

Applied Data Science using R, Sessions 15 & 16

Prof. Dr. Claudius Gräbner-Radkowitsch Europa-University Flensburg, Department of Pluralist Economics www.claudius-graebner.com | @ClaudiusGraebner | claudius@claudius-graebner.com

- Build upon the example from previous session: what are the determinants of beer consumption?
 - We considered two variables **separately**: income and beer price
- Multiple regression analysis allows us to consider **both variables at once**
 - This changes the interpretation of the obtained estimates
 - They now give the association with the outcome variable, assuming that all other variables are held constant

Goals for today

- I. Learn how to implement and interpret multiple linear regression models
- II. Learn how to deal with categorial variables within a regression
- III. Understand the concept of interaction effect and the difference between interaction and parallel slopes models

Multiple linear Regression

Introduction

- In terms of theoretical background and technical implementation, multiple regression analysis is very similar to simple linear regression
- The overall sequence of considerations remains the same:

Let us take this opportunity to recap what we have learned

Data exploration

 We again use the data set DataScienceExercises::beer, but only the three variables of interest

• Since consumption, income and price are all numerical, we can basically proceed as in the previous session

Data exploration

- Our focus on both income and price can be justified **theoretically** via reference to economic theory....
- ...and **empirically** by looking at the correlations:

> cor(beer_data\$consumption, beer_data\$price) [1] -0.8038513 > cor(beer_data\$consumption, beer_data\$income) [1] -0.714995 > cor(beer_data) consumption price income 1.0000000 -0.8038513 -0.7149950 consumption price -0.8038513 1.0000000 0.9763155 -0.7149950 0.9763155 income 1.0000000

Note: very strong correlations between explanatory variables should be a warning sign! More on this later!

Data exploration

- Our focus on both income and price can be justified theoretically via reference to economic theory....
- ...and empirically by looking at the correlations:

In both cases, a linear models seems to be an adequate choice!

Estimate a multiple regression model

• Writing down our regression model with two explanatory variables is very similar to the case with only one variable:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

 $CONS = \beta_0 + \beta_1 PRICE + \beta_2 INCOME + \epsilon$

• The computation in R is equally similar \rightarrow here is the general form:

 $lm(y \sim x1 + x2, data=data_used)$

• **Exercise**: adjust the code to the actual data set DataScienceExercises::beer and estimate the model!

Interpret a multiple regression model

- > cons_model <- lm(consumption ~ price + income, data = beer_data)</pre>
- > moderndive::get_regression_table(cons_model)
- # A tibble: 3×7

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
<chr></chr>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>
1 intercept	57.2	9.47	6.04	0	37.7	76.6
2 price	-27.7	5.44	-5.08	0	-38.8	-16.5
3 income	0.003	0.001	3.36	0.002	0.001	0.004

 In the multiple case, the coefficients must be interpreted in a ceteris paribus fashion:

For every increase of 1 unit in price, there is an associated decrease of, on average **and ceteris paribus**, 27.7 units of **consumption**.

For every increase of 1 unit in **income**, there is an associated increase of, on average **and ceteris paribus**, 0.003 units of **consumption**.

Graphical interpretation

- The more explanatory variables you use, the more difficult it becomes to think about the regression problem graphically
- In the simple regression case we fitted a regression line
- In the case of two explanatory variables we fit a regression plane
- In cases with more than two variables we fit a regression hyperplane

 But this is not easy to get your head around → if anything plot conditional relationships (see optional tutorial on the course page)

Outlook: the choice of variables matters

• **Guess:** how do the estimates for income and price from the simple regression models and the multiple regression model relate to each other?

- This points to an important concept: **omitted variable bias**
 - When you forget one important variable in your model, all resulting estimates can be misleading → more on this in later sessions

Exercise

- Get together in groups and use again the data on beer consumption
- But this time use all potential explanatory variables for the RHS:
 - price: the price for beer
 - price_liquor: the price for other strong alcoholic beverages
 - price_other: price of other goods and services
 - income: household income
- Before you do the estimation, what would you expect regarding their effect?
- How can you interpret the estimates you obtained? How did the estimates change over different specifications?
- What specification would you prefer? Why?

Categorial variables: Simple regression

Using categorical variables

- So far we only worked with numerical and continuous variables
 - Income, prices, consumption,...
- But there are other types of variables, e.g. categorial data
 - Gender, continent of origin, employment status,...
- In the following we want to learn how to consider categorial data as explanatory variables
 - If you have categorial variables on the LHS \rightarrow different estimation methods
- Let us illustrate the procedure using the data on life expectancy, but focus on the role of different continents
 - Data: DataScienceExercises::gdplifexp2007
 - Variables of interest: continent, lifeExp, and gdpPercap

Exploratory analysis

	Data Summary ·				-								
			Value	S									
	Name		life_	exp									
	Number of rows		142										
	Number of column	s	3										
	Кеу		NULL										
	Column type freq	uency:											
	factor	-	1								Me	ean and	median
	numeric		2	No pr	oblems w	ith					dif	fer cons	iderable
				missir	ng data, 1	42	There a	are five o	lifferent c	ontinents) (lue to sl	kewed
	Group variables		None	observ	ations in t	otal	WITH	Africa c	omprisinę tries (52)	g most	OI:	variab	n of the les!
/	— Variable type	: factor -											
	skim_variable	n_missing	comple	te_rate	ordered	n_unique	e top_o	counts					
	1 continent	0		1	FALSE	!	5 Afr:	52, As	i: 33, E	ur: 30,	Ame: 25		
	— Variable type	: numeric											
	skim_variable	n_missing	comple	te_rate	mean	sd	p0	p25	p50	p75	p100	hist	
	1 lifeExp	0		1	67.0	12.1	39.6	57.2	71.9	76.4	82.6		
	2 gdpPercap	0		1	11680.	12860.	278.	1625.	6124.	18009.	49357.		

Note: continent was saved as character, but we transformed it into factor

Exploratory analysis

• We see considerable differences also within continents:

Especially Oceania will be hard to interpret since it comprises only two countries

Exploratory analysis

• To look at the distribution within countries, histograms are also useful:

• For categorial variables, fitting a regression line has a different meaning

Fitting a model with categorical variables

- The notation for a model with a categorical variable on the RHS is similar...
 - ...but the technical implementation is quite different
- While we write:

$$lifeExp = \beta_0 + \beta_1 \cdot CONT + \epsilon$$

• What actually being estimated is:

 $lifeExp = \beta_0 + \beta_{Am.} \cdot \mathbb{I}_{Am.}CONT + \beta_{As.} \cdot \mathbb{I}_{As.}CONT + \beta_{Eu.} \cdot \mathbb{I}_{Eu.}CONT + \beta_{Oc.} \cdot \mathbb{I}_{Oc.}CONT + \epsilon$

- Here $\mathbb{I}_{x}(X)$ is an indicator function that takes the value 1 if X = x and zero otherwise
 - Thus $\mathbb{I}_{Am}(CONT) = 1$ iff CONT equals Am. (i.e. Americas), and 0 otherwise
 - Note that there are four indicator functions \rightarrow four continents (plus one as a baseline level)
- The estimates must, therefore, always be interpreted against a baseline value (here: the first factor level, i.e. Africa)

Interpreting a model with categorical variables

 $lifeExp = \beta_0 + \beta_{Am} \cdot \mathbb{I}_{Am} CONT + \beta_{As} \cdot \mathbb{I}_{As} CONT + \beta_{Eu} \cdot \mathbb{I}_{Eu} CONT + \beta_{Oc} \cdot \mathbb{I}_{Oc} CONT + \epsilon$

- Lets consider the results from estimating this formula one by one:
 - Note that the code for the regression remains lm(lifeExp~continent)

```
> cont_linmod <- lm(lifeExp~continent, data = life_exp)</pre>
```

```
> get_regression_table(cont_linmod)
```

```
# A tibble: 5 \times 7
```

	term		est	imate
	<chr></chr>			<db1></db1>
1	intercept			54.8
2	continent:	Americas		18.8
3	continent:	Asia		15.9
4	continent:	Europe		22.8
5	continent:	Oceania		25.9

	continent	lifeExp_mean	diff_a	frica
	<fct></fct>	<db1></db1>		<db1></db1>
1	Africa	54.8		0
2	Americas	73.6		18.8
3	Asia	70.7		15.9
4	Europe	77.6		22.8
5	Oceania	80.7		25.9

- The intercept corresponds to the mean value of the baseline category
 - The other estimates correspond to the deviation of the group mean from this baseline

Interpreting a model with categorical variables

 $lifeExp = \beta_0 + \beta_{Am.} \cdot \mathbb{I}_{Am.}CONT + \beta_{As.} \cdot \mathbb{I}_{As.}CONT + \beta_{Eu.} \cdot \mathbb{I}_{Eu.}CONT + \beta_{Oc.} \cdot \mathbb{I}_{Oc.}CONT + \epsilon$

- Lets consider the results from estimating this formula one by one:
 - Note that the code for the regression remains lm(lifeExp~continent)

- The intercept corresponds to the mean value of the baseline category
 - The other estimates correspond to the deviation of the group mean from this baseline

Quick recap

• The result of the following regression model...

```
SUGAR = \beta_0 + \beta_1 KIND + \epsilonlm(`residual sugar` ~ kind, data = wine_data)
```

• ...is as follows:

term	estimate		
<chr></chr>	<db1></db1>		
intercept	2.54		
kind: white	3.85		

- The variables are as follows:
 - `residual sugar`: the amount of sugar left in the wine
 - **kind**: the kind of wine, red or white

• How would you interpret the estimated coefficients?

Categorical variables: Multiple regression

Introduction

- What if we would like to consider both continuous and categorical variables?
- In this case we must distinguish two cases: an interaction model, and a parallel slope model
 - Note: both also occur in the case without categorical variables, but here the distinction is most intuitive
- To illustrate the difference, we consider a data set on the prices of economics journals: DataScienceExercises::econjournals
 - Only consider journals that published at least 10 papers and cost under 5000 USD per year: dplyr::filter(papers>10, sub_price<5000)
- Main interest: what is the impact of the paper length on the subscription price? Are there differences between profit and nonprofit publishers?

The parallel slopes model

- The variables pages_py and sub_price are continuous, the variable publisher type is categorical
- What if we simple add both explanatory variables to the RHS?

lm(sub_price~pages_py+publisher_type)

<db1></db1>
51.
0.561
02.

The categorical variables correspond to different intercepts, but each group has the same slope

The parallel slopes model

- The results of the parallel slopes model are intuitive in the sense that journals from non-profit publishers are cheaper
- The model suggests, however, that an additional page comes with the same increase in journal price
- The visual inspection, however, indicates that this relationship differs across group

2 pages_py 0.561

3 publisher_type: profit 602.

To capture the idea that the association between page length and price differs across groups we need an **interaction model**

The interaction model

- This model is more complex: it does not assume that sloper are the same in the different groups → variables interact with each other
- Technically, we just replace the + by an * in our model formula:

term	estimate
<chr></chr>	<db1></db1>
intercept	111.
pages_py	0.154
publisher_type: profit	111.
<pre>pages_py:publisher_typeprofit</pre>	0.543

lm(sub_price~pages_py*publisher_type)

• There is one more parameter to estimate than in the PSM

Publisher type: --- nonprofit --- profit

• But the plot suggests that this additional complexity is warranted: for-profit publisher charge more per additional page

The interaction model Interpretation

term	estimate
<chr></chr>	<db1></db1>
intercept	111.
pages_py	0.154
<pre>publisher_type: profit</pre>	111.
<pre>pages_py:publisher_typeprofit</pre>	0.543

• The estimate intercept is the intercept only for the reference group \rightarrow 111

- The estimate pages_py gives the slope only for the reference group $\rightarrow 0.154$
- The estimate publisher_type:profit gives the difference in the intercept for the profit group
 - intercept + publisher_type:profit = 222

The interaction model Interpretation

term	estimate
<chr></chr>	<db1></db1>
intercept	111.
pages_py	0.154
publisher_type: profit	111.
<pre>pages_py:publisher_typeprofit</pre>	0.543

- The estimate intercept is the intercept only for the reference group \rightarrow 111
- The estimate pages_py gives the slope only for the reference group $\rightarrow 0.154$
- The estimate pages_py:profit gives the difference in the slope for the profit group
 - pages_py+pages_py:publisher_typeprofit=0.697-

The interaction and parallel slopes model

- As a general rule of thumb: the PSM is better if nothing suggests that slopes differ \rightarrow then the estimation is more efficient
 - In other cases, its safer to use the interaction mode
 - We learn how to test for the right model in later sessions

Model selection in the multiple variable case

Model selection using visual inspection

• Visual inspecting the estimated model is mandatory and often very insightful: the interaction model is clearly preferable due to different slopes

Model selection using R^2

- You can use R^2 as one argument for model selection, i.e. when you need to decide which models works best for your purpose at hand
- Compare, for instance, the R^2 of the PSM and interaction model we estimated before:
- summary(journal_linmod_intct)[["r.squared"]]: 0.75
- summary(journal_linmod_psm)[["r.squared"]]: 0.68
- The reference to R^2 confirms our impression that the more complex interaction model is warranted
- But: using R^2 in the multiple regression context can be misleading: adding more variables typically increases the R^2 for purely mathematical reasons

Model selection using R^2

• To see why consider the formal definition of R^2 :

$$R^{2} = \frac{ESS}{TSS} = \frac{\sum_{i=1}^{N} \left(\hat{y}_{i} - \bar{y}\right)}{\sum_{i=1}^{N} \left(y_{i} - \bar{y}\right)}$$

- An additional explanatory variable never changes TSS, but mostly increases ESS at least a bit → bias towards 'too complex' models
- There is an alternative, the adjusted R^2 , denoted as $ar{R}^2$:

$$\bar{R}^2 = 1 - \frac{\sum_{i=1}^n e^2 / (N - K - 1)}{\sum_{i=1}^n (Y_i - \bar{Y})^2 / (N - 1)}$$

- Here, N is the number of observations and K die Anzahl der zu schätzenden Parameter

Model selection using R^2

- \bar{R}^2 only increases if the additional variables contribute to the explanatory power for substantial reasons
 - Drawback: we cannot interpret its value as the share of explained variation any more
- As we learn later, both R^2 and \bar{R}^2 provide valuable information, but they should be complemented by other diagnostic tools
- In the present PSM vs. IM case, using \bar{R}^2 instead of R^2 does not alter the conclusion, but you find plenty other examples in the readings

Summary & outlook

Summary

- We extended the simple to the multiple regression model
- This allows us to have more than one variable on the RHS
- The interpretation of the estimates is different:
 - For every increase of 1 unit in the explanatory variable i, there is an associated decrease of, on average and ceteris paribus, of $\hat{\beta}_i$ units in the response
 - Ceteris paribus: holding all other variables constant
- This allows us to separate the variation in the response variable according to the different explanatory variables
- Forgetting relevant explanatory variables seems to cause problems since adding a variable changes estimates of all other variables

- We also learned about how to include categorical variables to regressions
- Technically this is easy, but the interpretation becomes a bit trickier
- When both continuous and categorical variables are used, we learner about the difference between interaction and parallel slope models
- The latter are simpler, but often the complexity of the former model is warranted
- Finally, we saw that selecting models using R^2 requires a bit more caution in the multiple regression context

