Fundamental object types in R III:
Factors and data frames

Claudius Grabner-Radkowitsch

2022-09-06
Contents
1 Optional background info: attributes and classes 1
2 Factors 3
3 Data Frames 5
4 Digression: Matrices in R 9

1 Optional background info: attributes and classes

In the previous posts you learned about the most important fundamental data types in R.
The types we will learn about below and not less important, but less fundamental. This
means they are built by taking one of the base types we encountered before, and ‘adding
some features’ These features change the behavior of the type, e.g.m how it is printed or
how it is affected by certain function calls, but also what kind of operations it allows."

This process of ‘adding features’ is usually done by adding ‘attributes’ to an object. In
principle, you can add attributes to any objects without much effect by using the attr ()
function:

x <- 2.0
attr(x, "Mood") <- "Haha!"

To retrieve attributes use attributes():

attributes(x)

$Mood
[1] "Haha!"

In fact, some new types allow you to do less than the original type, i.e. here the new features are
restrictions. The tibble we will encounter below is such an example.

Tutorial: Object types III - Factors and data frames 2

Sometimes, adding attributes of a particular name have more relevant implications. One
useful way to use attributes, for instance, is to name the single elements of vectors,
something that changes the way the objects are printed and something that we already
discussed in the context of lists:

y L= C(l, 2, 3)
attr(y, "names") <- c("First", "Second", "Third")
y

First Second Third
1 2 3

attributes(y)

$names
[1] "First" "Second" "Third"

Now we can call elements by their name:

y["Second"]

Second
it 2

But things become really interesting if you add an attribute called class: this really
transforms the data types into a new, less fundamental type. In fact, this is how the
types we discuss below, are created: smart people added, among other things, a class
attribute to a more fundamental data type (integer in the case of factors and list
in the case of data.frames). The art of writing new classes is part of object oriented
programming, an advanced concept that we do not cover in this course (and, to be honest,
one of the areas where R is not particularly well designed).

One implication of this ‘less fundamental’ nature of the objects we encounter below is
that typeof () usually returns the base type. For instance, below we will learn about
the factor, a type that is built upon integer. If we call typeof () on a factor, it will
return the fundamental type, i.e. integer:

xx <- factor(c(1,2))
typeof (xx)

[1] "integer"

Fortunately, the standard test functions (is.*()) usually work, so you can use
is.factorQ):

Data science in R - Fall Semester 2022

https://adv-r.hadley.nz/oo.html
https://adv-r.hadley.nz/oo.html
https://datascience-euf-fall22.netlify.app/

Tutorial: Object types III - Factors and data frames 3

is.factor (xx)

[1] TRUE

Alternatively, you can always inspect that attributes of the object to find out about its
class:

attributes (xx)
$levels

[1] ||1|| n2||
##

$class

[1] "factor"

All this can be confusing at first, so it is important to keep it in mind. Once you wrapped
your head upon this, many confusing behaviors suddenly start to make sense, e.g. that
mutating factors within a data.frame can result in whole numbers, a phenomenon we
will discuss in the context of data wrangling later.

2 Factors

We usually use factors to represent ordinal or categorical data. At first sight a factor is
an atomic vector that can only take a pre-specified number of values, so called levels. To
create a factor we use the function - surprise - factor():

x <- c("Female", "Male", "Female")
x <- factor(c("Female", "Male", "Female"))
X

[1] Female Male Female
Levels: Female Male

If we want to define levels that do not yet have any instances, we can do this with the
optional argument levels:

x <- c("Female", "Male", "Female")
x <- factor(c("Female", "Male", "Female"),
c("Diverse","Female", "Male"))

[1] Female Male Female
Levels: Diverse Female Male

Data science in R - Fall Semester 2022

https://datascience-euf-fall22.netlify.app/

Tutorial: Object types III - Factors and data frames 4

If we use the argument levels and also try to add values that are not included in the
levels, these are set to NA:

x <- c("Female", "Male", "Female")
x <- factor(c("Female", "Male", "Female", "Diverse"),
c("Female", "Male"))

[1] Female Male Female <NA>
Levels: Female Male

Usually, the sequence in which we mention levels does not matter. In the case of ordinal
data, however, the sequence becomes important. To consider it, we must use the argument
ordered:

x <- c("High", "High", "Low", "High")

x <- factor(x,
c("Low", "Mid", "High"),
TRUE)

[1] High High Low High
Levels: Low < Mid < High

Frequently, the elements of factors are words, i.e. objects of the type character. From a
technical point of view, however, factors are stored as integers: in order to save memory
space, each level is assigned a whole number in the computer memory, which is then
mapped to the actual value. Especially when the elements consist of large numbers or
long words, this helps saving memory space since these expressions only have to be stored
once, and each element of the factor is only a simple number. Therefore, typeof () also
returns integer for factors:

x <- factor(c("Female", "Male", "Female"),
c("Male", "Female", "Diverse"))
typeof (x)

[1] "integer"

To check whether an object is a factor we use the function is.factor():

is.factor(x)

[1] TRUE

Not all operations that are defined for integers, however, also work for factors:

Data science in R - Fall Semester 2022

https://datascience-euf-fall22.netlify.app/

Tutorial: Object types III - Factors and data frames 5

x[1] + x[2]

Warning in Ops.factor(x[1], x[2]): '+' not meaningful for factors

[1] NA

At the same time, there are some useful things we can do with factors. For instance, the
function table() gives us the absolute frequencies of the factor elements, a task that is
very common for categorical data:

table(x)

x

Male Female Diverse
#it 1 2 0

3 Data Frames

The data.frame is a special type of list. It is among the most widespread data types
used in data science. In contrast to a normal list, all elements of a data.frame must
have the same length. This means that you can think of a data.frame as a list arranged
as a rectangle and represented as a table. The headings of the tables then correspond to
the names of the vector elements of the list.

Because of the close relationship, we can create a data.frame directly from a list by
using the function as.data.frame():

1 3 <- 1list(
"a" = 1:3,
"b" = 4:6,
"¢ =T7:9

)

df 3 <- as.data.frame(l_3)

Here we might think of the names of the three vectors, a, b and ¢ as the headings of a
table (representing, often, variable names), and the content of the vectors as the cell
entries of the table:

df_3

abc
1147
2 2 5 8
3 3 6 9

Data science in R - Fall Semester 2022

https://datascience-euf-fall22.netlify.app/

Tutorial: Object types III - Factors and data frames 6

The relation to 1ists becomes obvious if we call typeof (), which returns the underlying
data type:

typeof (df _3)

[1] "list"

To test whether an object is a data.frame we use is.data.frame:

is.data.frame(df 3)

[1] TRUE

is.data.frame(1l_3)

[1] FALSE

The difference to a list becomes particularly obvious in the different printing behavior of
the two:

1.3

$a

[1] 1 2 3
##

$b

[1] 4 56
#i#t

$c

[1] 7 8 9

df 3

#i# a
11
2 2
3 3

© 0 N O

A more direct way to create a data.frame is to use the function data.frame():

df _4 <- data.frame(
"gender" = c(rep("male", 3), rep("female", 2)),
"height" = c(189, 175, 180, 166, 150)

)

df 4

Data science in R - Fall Semester 2022

https://datascience-euf-fall22.netlify.app/

Tutorial: Object types III - Factors and data frames 7

gender height
1 male 189
2 male 175
3 male 180
4 female 166
5 female 150

To extract single elements, columns or rows of a data.frame we can use [and [[in a
similar way we used it for lists, just keeping in mind that we now have two dimensions to
deal with, instead of only one in the case of lists.

To subset columns we can call them by name:

df _4["gender"]

gender
1 male
2 male
3 male
4 female
5 female

The result is another data.frame:
is.data.frame(df_4["gender"])

[1] TRUE

If we want to extract the underlying atomic vector we must use [[:
df _4[["gender"]]

[1] "male" "male" "male" "female" "female"

This is also helpful to inspect the underlying data type:

typeof (df _4[["gender"]1])

[1] "character"

Data frames can become very large, so its often useful to get a first overview about
what the data.frame contains. The functions names(), dplyr::glimpse(), head(),
and View() are useful in this context.

The function names () returns a vector with all the column names:

Data science in R - Fall Semester 2022

https://datascience-euf-fall22.netlify.app/

Tutorial: Object types III - Factors and data frames 8

names (df_4)

[1] "gender" "height"

Hint: For large data.frames it can be useful to wrap names() into sort (),
which sorts the resulting vector in alphabetical order.

To print the first n rows of a data.frame use head(). By default n=5, but you can set it
explicitly:

head (df 4, 2)

gender height
1 male 189
2 male 175

The package dplyr provides the useful function dplyr: :glimpse (), which gives a general
overview about all columns and their types:

dplyr: :glimpse(df_4)

Finally, if you work within R-Studio, you can use View() to get a Excel-like representation
of your data.

As you might have guessed by now, data.frames are the classic object to represent
read-in data. If, for instance, you download data on GDP in Germany from the Internet
and then import this data into R, it usually gets represented as a data.frame. This
representation then allows direct analysis and manipulation of the data.

At the same time, data.frames are a very old object type, the behavior of which
sometimes feels a bit outdated. Because of this, some authors created a new data type,
which is built upon the data.frame, but behaves slightly different: the tibble. The
tibble is made available via the package tibble, so to use tibbles, this packages has to
be installed first.

You can read more about tibbles in chapter 10 of R for Data Science, i.e. here (to avoid
confusion: in his book Hadley always attaches the package tidyverse at the beginning
of the chapter. This includes attaching the package tibble.)

Digression: Dialects of R As with natural languages, programming lan-
guages feature different dialects, i.e. different ways of doing the same actions.
In R this becomes particularly obvious in the context of dealing with data.
Here, the different dialects show themselfes in different object types used for
the data you are working with. To the best of my knowedge, there are three
main dialects, each associated with a different focus on data representation.
The base dialect represents data as data.frames and it is the original ap-
proach envisioned by the R developers. The tidyverse dialect represents data
as tibbles and is built around a number of different packages summarized

Data science in R - Fall Semester 2022

https://r4ds.had.co.nz/index.html
https://r4ds.had.co.nz/tibbles.html
https://datascience-euf-fall22.netlify.app/

Tutorial: Object types III - Factors and data frames 9

under the name tidyverse. It is aimed to develop an set of packages that
allow you to do all tasks commonly associated with data science within a con-
sistent syntax and design philosophy. The data.table dialect represents data
as data.tables, which are provided by the package data.table. It is designed
to work with large data sets and is by far the fastest and computationally
most efficient approach to data processing. In this course we will follow the
tidyverse dialect because it is particularly easy to learn, widespread, and
usually a good default option. Once you mastered it and you want to work
in the field of big data, you should then consider learning the data table
dialect as well. Right now, the most important thing is consistency: all the
dialects help you to achieve almost any aim you will ever have in the context
of data science. But things get very confusing if you mix different dialects in
practice. Their functions are designed to work well with the other elements
of the respective dialect environment, but things can become confusing if you
mix data types and functions from, e.g., the tidyverse and data.table dialect.
If you want to read more about the controversies associated with the different
dialects you might start, e.g., here (altough I do not share the opinion of the
author regarding teachability).

Transforming data.frames and tibbles is one of the central tasks when doing data
science, and there are different approaches to it in R. Usually, taking your raw data
and turnging it into a well formatted data.frame is not straightforward and usually
takes at least as much time as the final analysis of the data. Thus, it is one of the
central course objectives to equip you with the tools to facilitate this often underrated
and underestimated task. But this will be the main subject of the sessions on data
wrangling.

4 Digression: Matrices in R

Another data type that is used frequently in many circumstances, especially statistics
and engineering, are matrices. These are two-dimensional objects with rows and columns,
each of which are atomic vectors.? We do not deal with matrices explicitly to a large
degree, but knowing about how they work often turns out useful. Therefore, I provide a
quick overview below, but since matrices are not a central subject of this course, I leave
you with some links to further information.

Matrices are created with the function matrix (). This function takes as its first argument
the elements of the matrix and then the specification of the number of rows (nrow) and/or
the number of columns (ncol):

m_1 <- matrix(11:20, 5)
m_1
[,1]1 [,2]

[1,] 11 16
[2,] 12 17

2If you read the section on attributes above: matrices are objects that were given a new attribute dim.

Data science in R - Fall Semester 2022

https://www.tidyverse.org/
https://github.com/Rdatatable/data.table
https://github.com/matloff/TidyverseSkeptic
https://datascience-euf-fall22.netlify.app/

Tutorial: Object types III - Factors and data frames 10

[3,] 13 18
[4,] 14 19
[5,] 15 20

We can extract and/or substitute the rows and columns as well as individual values as
follows:

m_1[,1] # First column

[1] 11 12 13 14 15

m_1[1,] # First row

[1] 11 16

m_1[2,2] # Element [2,2]

[1] 17

Hint: Matrices are built upon atomic vector, which is why typeof () always
returns the type of the atomic vectors making up the elements:

typeof (m_1)

[1] "integer"

As with factors and data frames this has to do with the particular class
attributes of matrices, which, however is implicit:3

class(m_1)

[1] "matrix" "array"

attributes(m_1)

$dim
[1] 5 2

To test whether an object is a matrix use is.matrix():

3This is another piece of evidence for the very confusing class concept and object-orientated style of R.
See this chapter for more details, in case you are interested.

Data science in R - Fall Semester 2022

https://adv-r.hadley.nz/oo.html
https://datascience-euf-fall22.netlify.app/

Tutorial: Object types III - Factors and data frames 11

is.matrix(m_1)

[1] TRUE
is.matrix(2.0)
[1] FALSE

The most important thing to learn about matrices is matrix algebra. You can find many
good introductions in the web, e.g. here or here and, in German, here.

Data science in R - Fall Semester 2022

https://www.statmethods.net/advstats/matrix.html
https://www.math.uh.edu/~jmorgan/Math6397/day13/LinearAlgebraR-Handout.pdf
https://graebnerc.github.io/RforSocioEcon/formalia.html#formalia-linalg
https://datascience-euf-fall22.netlify.app/

	Optional background info: attributes and classes
	Factors
	Data Frames
	Digression: Matrices in R

